Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (2024)

Y. BaronUni. Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France  J. L. LábárThin Film Physics Laboratory, Institute of Technical Physics and Materials Science, Centre of Energy Research, Konkoly Thege M. u. 29-33, H-1121 Budapest, Hungary  S. LequienUni. Grenoble Alpes, CEA,IRIG-MEM, 38000 Grenoble, France  B. PéczThin Film Physics Laboratory, Institute of Technical Physics and Materials Science, Centre of Energy Research, Konkoly Thege M. u. 29-33, H-1121 Budapest, Hungary  R. DaubriacUniv. Grenoble Alpes, CEA,LETI, Minatec Campus, 38000 Grenoble, France   S. KerdilèsUniv. Grenoble Alpes, CEA,LETI, Minatec Campus, 38000 Grenoble, France  P. Acosta ALbaUniv. Grenoble Alpes, CEA,LETI, Minatec Campus, 38000 Grenoble, France  C. MarcenatUniv. Grenoble Alpes, CEA, Grenoble INP,IRIG-PHELIQS, 38000 Grenoble, France  D. DébarreUni. Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France  F. Leflochfrancois.lefloch@cea.frUniv. Grenoble Alpes, CEA, Grenoble INP,IRIG-PHELIQS, 38000 Grenoble, France  F. Chiodifrancesca.chiodi@c2n.upsaclay.frUni. Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France

(June 25, 2024)

Abstract

We present superconducting monocrystalline Silicon On Insulator thin 33 nm epilayers. They are obtained by nanosecond laser annealing under ultra-high vacuum on 300 mm wafers heavily pre-implantated with boron (2.5× 1016at/cm22.5superscript1016𝑎𝑡𝑐superscript𝑚22.5\times\,10^{16}\,at/cm^{2}2.5 × 10 start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT italic_a italic_t / italic_c italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, 3 keV). Superconductivity is discussed in relation to the structural, electrical and material properties, a step towards the integration of ultra-doped superconducting Si at large scale. In particular, we highlight the effect of the nanosecond laser annealing energy and the impact of multiple laser anneals. Increasing the energy leads to a linear increase of the layer thickness, and to the increase of the superconducting critical temperature Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT from zero (<35mKabsent35𝑚𝐾<35\,mK< 35 italic_m italic_K) to 0.5K0.5𝐾0.5\,K0.5 italic_K. This value is comparable to superconducting Si layers realised by Gas Immersion Laser Doping where the dopants are incorporated without introducing the deep defects associated to implantation. Superconductivity only appears when the annealed depth is larger than the initial amorphous layer induced by the boron implantation. The number of subsequent anneals results in a more hom*ogeneous doping with reduced amount of structural defects and increased conductivity. The quantitative analysis of Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT concludes on a superconducting/ non superconducting bilayer, with an extremely low resistance interface. This highlights the possibility to couple efficiently superconducting Si to Si channels.

Introduction

In the context of solid-state based quantum engineering, material science remains a very active field of research. Recent reviews [1, 2, 3, 4] point out the importance of controlling both the quality of materials, to prevent/reduce quantum decoherence [5, 6], and the reproducibility, in the prospect of scaling-up quantum technology towards a very large number of qubits.In this quest of large scale integration, silicon and germanium can be seen as the short-term most promising materials [7, 8]. However, they are now restricted to spin qubits, where the rather low yield in the quantum properties has limited the demonstration of coupled qubits to a very small number [9], as compared to superconducting transmons qubits where operations with few tens of qubits have been recently demonstrated [10, 11]. The possibility to fabricate superconducting qubits with silicon would give both the advantage of a mature technology and of superconductivity. In principle, this could be done with superconducting silicon, obtained by combining heavily boron doping and nanosecond laser annealing [12, 13, 14, 15, 16]. But implementation of superconducting Si:B into quantum circuits is still at its early age [17, 18] and a better understanding of the superconducting properties is still required, especially with the constraints of the use of compatible large scale integration tools.In the present study, we investigate the superconducting properties of boron doped superconducting silicon epilayers obtained on 33 nm thick SOI (Silicon On Insulator) 300 mm wafers after pre-implantation of boron dopants followed by nanosecond laser annealing. Our results demonstrate a continuous increase of the superconducting critical temperature Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT as a function of melted depth tuned by the laser energy, and the weak impact of implantation-induced defects. A maximum Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT of about 0.5K0.5𝐾0.5\,K0.5 italic_K is reached when the entire 33 nm thick silicon layer is melted, producing a crystalline structure, while no superconductivity is observed when the annealing only affects the surface amorphous layer induced by the strong dopant implantation. We emphasize the role of identical multiple laser shots by comparing series of sample having sustained 1 or 5 laser shots annealings, highlighting the decrease of defects and better hom*ogeneity with an increased number of shots. The Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT variation is well described by a two-layers model (one being superconducting and the other not) connected through a high transparency interface. This points out the possibility to optimally couple the superconducting layer to silicon channels through low resistance interfaces.

Nanosecond annealing of B implanted SOI

Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (1)

The first step of the fabrication of superconducting SOI layers is the implantation of a very high boron dose (2.5×10162.5superscript10162.5\times 10^{16}\,2.5 × 10 start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPTcm-2) at 333\,3keV on a non-intentionally doped 300300300\,300mmwafer. The initial SOI wafer has a silicon layer 333333\,33nm ±1plus-or-minus1\pm 1\,± 1 nm thick on top of a SiO2 buried oxide layer (BOX) of 202020\,20nm, as in [15]. After the implantation, the SOI layer is composed of an amorphous layer (a-Si) of 15±1plus-or-minus15115\pm 1\,15 ± 1nm on top of the remaining silicon crystalline layer (c-Si) (see Fig.4a in [15]). CTRIM simulations show that the dopants concentration in the underneath c-Si layer remains significant (above 1at.%1\,at.\%1 italic_a italic_t . % percent) [19].
The nanosecond laser annealing process is performed with an excimer XeCl laser of pulse duration 252525\,25ns under UHV (Ultra High Vacuum) conditions (P=109𝑃superscript109P=10^{-9}\,italic_P = 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPTmbar) with energy density at the sample level EL=300subscript𝐸𝐿300E_{L}=300italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 300 to 600mJ/cm2600𝑚𝐽𝑐superscript𝑚2600\,mJ/cm^{2}600 italic_m italic_J / italic_c italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (EL=600mJ/cm2subscript𝐸𝐿600𝑚𝐽𝑐superscript𝑚2E_{L}=600\,mJ/cm^{2}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 600 italic_m italic_J / italic_c italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT corresponding to bulk Si melting threshold). The effect of the laser pulse is to melt the top of the implanted silicon layer, over a 2222mm× 2absent2\,\times\,2× 2mm surface with laser energy hom*ogeneity of 1.2%percent1.21.2\%1.2 %, during 15absent15\approx 15≈ 15 to 252525\,25ns. This induces an extremely fast re-crystallisation, activating the dopants up to a saturation concentration of nsat=3×1021subscript𝑛𝑠𝑎𝑡3superscript1021n_{sat}=3\times 10^{21}\,italic_n start_POSTSUBSCRIPT italic_s italic_a italic_t end_POSTSUBSCRIPT = 3 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPTcm-3 (6 at.%percent\%%), an order of magnitude above the solubility limit nsol4×1020similar-tosubscript𝑛𝑠𝑜𝑙4superscript1020n_{sol}\sim 4\times 10^{20}\,italic_n start_POSTSUBSCRIPT italic_s italic_o italic_l end_POSTSUBSCRIPT ∼ 4 × 10 start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPTcm-3 [20]. The thickness of the melted layer linearly depends on the laser energy at the sample level. The Time Resolved Reflectometry (TRR) of a red (λ=675𝜆675\lambda=675\,italic_λ = 675nm) laser is recorded in-situ during the nanosecond laser annealing to follow the melting-solidification process, and its value is compared to bare, undoped, Si reflectivity Sisubscript𝑆𝑖\mathcal{R}_{Si}caligraphic_R start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT (Fig.1a).
For the present study, two series of laser spots have been generated. For the first series, each spot has been patterned after the laser annealing, to define Hall cross structures with Ti/Au contact pads allowing precise measurement of the square and Hall resistances. The second series of spots remained untreated, for X-Rays Diffraction (XRD) analysis. For both series, we have measured the resistance as a function of temperature down to 35mKabsent35𝑚𝐾\approx 35\,mK≈ 35 italic_m italic_K to extract the superconducting transition temperature Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT as a function of the laser energy ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. We emphasize the precise control on ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, and the impact of the sharp, flat, few nanometer thick interface at the bottom of the annealed layer, which allow to fine-tune with ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT the depth in the 33 nm deep SOI with 1-2 nm precision. The overall results for the time resolved reflectivity TRR𝑇𝑅𝑅TRRitalic_T italic_R italic_R, the square resistance Rsqsubscript𝑅𝑠𝑞R_{sq}italic_R start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT, the superconducting transition temperature Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and the active dopants dose 𝒩𝒩\mathcal{N}caligraphic_N measured by Hall effect are shown in Fig.1 as a function of the laser energy densityELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT.
We can identify three regimes. The first regime (regime 1) is for EL<445mJ/cm2subscript𝐸𝐿445𝑚𝐽𝑐superscript𝑚2E_{L}<445\,mJ/cm^{2}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT < 445 italic_m italic_J / italic_c italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT where no superconductivity is observed. The second regime (regime 2) applies for 445mJ/cm2<EL<560mJ/cm2445𝑚𝐽𝑐superscript𝑚2subscript𝐸𝐿560𝑚𝐽𝑐superscript𝑚2445\,mJ/cm^{2}<E_{L}<560\,mJ/cm^{2}445 italic_m italic_J / italic_c italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT < italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT < 560 italic_m italic_J / italic_c italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT with an almost linear increase of Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT up to a maximum value of 0.5K0.5𝐾0.5\,K0.5 italic_K. For EL>560mJ/cm2subscript𝐸𝐿560𝑚𝐽𝑐superscript𝑚2E_{L}>560\,mJ/cm^{2}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT > 560 italic_m italic_J / italic_c italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (regime 3), the entire silicon layer is full-melted, the resistance diverges and no superconductivity is observed.We observe important differences to the results of [15], where the annealing was performed on the same𝑠𝑎𝑚𝑒sameitalic_s italic_a italic_m italic_e implanted layers under N2subscript𝑁2N_{2}italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with a similar XeCl excimer laser but of longer laser pulse duration (160 ns instead of 25 ns). In the present work, we achieve a Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT tunable up to 0.5 K, with a superconducting phase only observed in monocrystalline layers below the full melt threshold, as opposite to the constant Tc0.18Ksimilar-tosubscript𝑇𝑐0.18𝐾T_{c}\sim 0.18\,Kitalic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ∼ 0.18 italic_K obtained only in a poly-crystalline layer above the full melt in [15]. Our results are instead more similar to what was observed for the longer annealing of 160 ns with an increased ion implantation energy, from 3 keV to 4 keV, for which monocrystalline films were shown to be superconducting at Tc=0.39subscript𝑇𝑐0.39T_{c}=0.39\,italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 0.39mK [16]. The recrystallisation dynamics seems then to be strongly dependent on the laser pulse duration, even for relative small changes (25 ns to 160 ns).

Explosive crystallisation, monocrystalline SiB, full-melt

Fig.1 shows the drastically different behavior observed in the three regimes: the explosive crystallization regime (1), the monocrystalline regime (2), and the full melt regime (3).In regime 1111 an explosive re-crystallisation of the doped amorphous Si (a-Si) takes place, followed by the partial melting of the resulting poly-crystalline Si (poly-Si). In this dynamic scenario [21], even for weak laser energy, a thin layer of the initial top a-Si melts. The transition from solid to liquid occurs during the first nanoseconds of the laser pulse. This thin layer re-solidifies almost instantly into poly-Si and the latent heat released during this liquid to solid transformation is sufficient to progressively melt the a-Si underneath. The process stops when the entire initial a-Si is totally transformed into poly-Si, as the energy is not sufficient to melt crystalline Si. During the remaining time of the laser pulse, as the laser energy increases above the poly-Si melting threshold, the just-formed poly-Si is melted over a depth that depends linearly with the laser energy density. In regime 1111, the entire a-Si is therefore transformed into poly-Si with a final thickness independent on the laser energy, with part of the poly-Si having been remelted. This results in a variation of reflectivity from the initial amorphous state at a=subscript𝑎absent\mathcal{R}_{a}=caligraphic_R start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT =1.52Sisubscript𝑆𝑖\,\mathcal{R}_{Si}caligraphic_R start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT to the polycrystalline state poly=1.05Sisubscript𝑝𝑜𝑙𝑦1.05subscript𝑆𝑖\mathcal{R}_{poly}=1.05\,\mathcal{R}_{Si}caligraphic_R start_POSTSUBSCRIPT italic_p italic_o italic_l italic_y end_POSTSUBSCRIPT = 1.05 caligraphic_R start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT (Fig.1a). The square resistance varies only slightly with the laser energy density and the small decrease observed is due to the re-arrangement of poly-crystals and a slightly better activation as a consequence of the poly-Si melting (Fig.1b). Correspondingly, the active dose (𝒩𝒩\mathcal{N}caligraphic_N) measured by Hall effect is nearly constant and independent on ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT (Fig.1c). From the laser energy density that characterizes regime 1, we estimate the thickness of the poly-Si layer to 18.5nmabsent18.5𝑛𝑚\approx 18.5\,nm≈ 18.5 italic_n italic_m, close to the initial a-Si layer thickness [15].

In regime 2222, the laser energy density is strong enough to melt the entire poly-Si created by explosive recrystallization from the a-Si layer, plus a thin part of the crystalline c-Si layer underneath. In that situation, the poly-Si is entirely melted and transformed into a boron doped monocrystalline silicon Si:B epilayer from the remaining weakly doped c-Si seed. This can be observed in the TRR𝑇𝑅𝑅TRRitalic_T italic_R italic_R map as the reflectivity first peaks as a result of the explosive crystallisation (Fig.1a, yellow line at t20similar-to𝑡20t\sim 20\,italic_t ∼ 20ns, ec=1.82Sisubscript𝑒𝑐1.82subscript𝑆𝑖\mathcal{R}_{ec}=1.82\,\mathcal{R}_{Si}caligraphic_R start_POSTSUBSCRIPT italic_e italic_c end_POSTSUBSCRIPT = 1.82 caligraphic_R start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT) then increases to the melted phase (red, melt=2.2Sisubscript𝑚𝑒𝑙𝑡2.2subscript𝑆𝑖\mathcal{R}_{melt}=2.2\,\mathcal{R}_{Si}caligraphic_R start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT = 2.2 caligraphic_R start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT) to finally cool down to a monocrystal (blue, mono=0.95Sisubscript𝑚𝑜𝑛𝑜0.95subscript𝑆𝑖\mathcal{R}_{mono}=0.95\,\mathcal{R}_{Si}caligraphic_R start_POSTSUBSCRIPT italic_m italic_o italic_n italic_o end_POSTSUBSCRIPT = 0.95 caligraphic_R start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT). The final thickness of Si:B layer on top of the c-Si depends linearly on the laser energy density (Fig.S7).The active dose (𝒩𝒩\mathcal{N}caligraphic_N) increases with ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT (Fig.1d), due to the incorporation and activation of an increasing amount of implanted dopants in the Si:B layer. Note that the measured 𝒩𝒩\mathcal{N}caligraphic_N is always lower than the initial implanted dose (at most 38%percent\%%), as the Hall effect only measures the active dose. From the TRR𝑇𝑅𝑅TRRitalic_T italic_R italic_R maps identification of the full melt (dmelt=dSOIsubscript𝑑𝑚𝑒𝑙𝑡subscript𝑑𝑆𝑂𝐼d_{melt}=d_{SOI}italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT = italic_d start_POSTSUBSCRIPT italic_S italic_O italic_I end_POSTSUBSCRIPT) and the corresponding dose 𝒩FMsubscript𝒩𝐹𝑀\mathcal{N}_{FM}caligraphic_N start_POSTSUBSCRIPT italic_F italic_M end_POSTSUBSCRIPT), it is possible to extract the active concentration of the thickest monocrystalline layer, 𝒩FM/dSOI=2.9×1021cm3subscript𝒩𝐹𝑀subscript𝑑𝑆𝑂𝐼2.9superscript1021𝑐superscript𝑚3\mathcal{N}_{FM}/d_{SOI}=2.9\times 10^{21}cm^{-3}caligraphic_N start_POSTSUBSCRIPT italic_F italic_M end_POSTSUBSCRIPT / italic_d start_POSTSUBSCRIPT italic_S italic_O italic_I end_POSTSUBSCRIPT = 2.9 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT italic_c italic_m start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT. The active concentration for the thinnest monocrystalline layer is likewise calculated to 3.1×1021cm33.1superscript1021𝑐superscript𝑚33.1\times 10^{21}cm^{-3}3.1 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT italic_c italic_m start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT. This suggests that the layers present a nearly constant active concentration nsat3×1021cm3subscript𝑛𝑠𝑎𝑡3superscript1021𝑐superscript𝑚3n_{sat}\approx 3\times 10^{21}cm^{-3}italic_n start_POSTSUBSCRIPT italic_s italic_a italic_t end_POSTSUBSCRIPT ≈ 3 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT italic_c italic_m start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT, equal within 7%percent77\,\%7 % for all the layers, as also confirmed by the nearly constant position of the Si:B XRD peak (Fig.S5). Similarly, a saturation of the active concentration nsat=2.83.1×1021cm3subscript𝑛𝑠𝑎𝑡2.83.1superscript1021𝑐superscript𝑚3n_{sat}=2.8-3.1\times 10^{21}cm^{-3}italic_n start_POSTSUBSCRIPT italic_s italic_a italic_t end_POSTSUBSCRIPT = 2.8 - 3.1 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT italic_c italic_m start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT was observed in bulk Si:B layers in the same 23 to 47 nm thickness range [20]. Those layers, realized by Gas Immersion Laser Doping (GILD), employed nanosecond laser annealing with exactly the same laser, but with a BCl3 gas precursor. The active concentration limit could thus be associated not to the dopant incorporation method, but to the maximum recrystallisation speed (4m/ssimilar-toabsent4𝑚𝑠\sim 4m/s∼ 4 italic_m / italic_s) [22] induced by the 25 ns pulse duration.
As the Si:B layer becomes thicker, the square resistance decreases smoothly with ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT (Fig.1b). One can notice that the square resistance after one laser shot is larger than after five shots. This can be understood as, on one side, the crystalline quality slightly improves upon repeated annealing, and, on the other, the hom*ogeneity of the boron is increased as the dopants initially present in the top of the layer have more time to diffuse within the whole melted layer.In this regime 2222, the superconducting temperature transition grows from TC<35mKsubscript𝑇𝐶35𝑚𝐾T_{C}<35\,mKitalic_T start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT < 35 italic_m italic_K (35mK35𝑚𝐾35\,mK35 italic_m italic_K is the minimum transition temperature we could measure in our cryostat) to 0.5K0.5𝐾0.5\,K0.5 italic_K just before reaching the full-melt regime 3333 (Fig.1c). Contrary to the Rsqsubscript𝑅𝑠𝑞R_{sq}italic_R start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT behavior, the Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT difference between 1 and 5 shot(s) is less marked.

Finally, the regime 3333 is reached when the laser energy is large enough that the entire silicon layer melts (full melt threshold) and an amorphous Si:B layer builds up on the underneath amorphous SiO2, recovering the initial amorphous reflectivity Ra/Rin=1.06subscript𝑅𝑎subscript𝑅𝑖𝑛1.06R_{a}/R_{in}=1.06italic_R start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT / italic_R start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT = 1.06 (Fig.1a). As a result, the Rsqsubscript𝑅𝑠𝑞R_{sq}italic_R start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT diverges up to 100 kΩΩ\Omegaroman_Ω and superconductivity is suppressed (Fig.1b,c).

Superconductivity and number of laser pulses

In order to better understand the impact of multiple laser shots on both the superconducting and the normal state, we complemented our transport measurements and X-Ray Diffraction data with Transmission Electronic Microscopy (TEM). We show in Fig.2 the comparison between two samples in regime 2 having the same active dose, realised with the same laser energy ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT=522 mJ/cm2 where nearly all the Si has been melted (dmeltsubscript𝑑𝑚𝑒𝑙𝑡d_{melt}italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT=29 nm), with 1 or 5 laser shots.The TEM images show from left to right the Si substrate, the SiO2 BOX, the B-implanted Si layer where the laser annealing took place, and a capping layer introduced to protect the layer during TEM sample preparation. The interface between melted and unmelted SiB is difficult to discern in the contrast of this particular samples as the interface is only similar-to\sim2 nm away from the BOX, and as the doping increases gradually over a few nanometers from the bottom of the SiB layer [23].

Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (2)

The impact of performing a few laser shots as opposite to a single one is evident in the different sublayer structure within the laser annealed SiB, and in an increased disorder for 1 laser shot. A larger amount of structural defects is present for a single laser annealing, with dislocations and stacking faults starting from two interfaces situated about 10 nm and 17-21 nm above the BOX, interfaces created between a fully strained layer on the bottom, a partially relaxed one in the middle with a gradually increasing deformation, and a top sublayer with a constant deformation (Fig.S8). In comparison, the sample realised with 5 laser shots is more hom*ogeneous, with fewer defects starting 13 nm above the BOX, and lower deformation (Fig.S8). We can understand this difference as stemming from an incomplete B diffusion, from the higher implanted concentration at the top towards the bottom, during the short (20nssimilar-toabsent20𝑛𝑠\sim 20\,ns∼ 20 italic_n italic_s) melting time for a single laser shot, as opposed to a more hom*ogeneous dopant concentration for 5 laser shots allowing a longer diffusion time (100nssimilar-toabsent100𝑛𝑠\sim 100\,ns∼ 100 italic_n italic_s).
These observations are in agreement with the electrical measurements: 1 shot samples show, systematically, a higher resistance (Fig.1) and a Residual Resistance Ratio RRR=R300K/R4Ksubscript𝑅300𝐾subscript𝑅4𝐾R_{300K}/R_{4K}italic_R start_POSTSUBSCRIPT 300 italic_K end_POSTSUBSCRIPT / italic_R start_POSTSUBSCRIPT 4 italic_K end_POSTSUBSCRIPT closer to unity, indicating that the resistance at low temperature can be mostly attributed to impurities and crystallographic defects as opposed to thermal scattering. As an example, the two samples shown in Fig.2 have RRR=1.1 and RRR=1.28 for 1 shot and 5 shots respectively. Similarly, XRD data show a better crystalline quality for the 5 shot samples, highlighted by a higher amplitude of the diffraction peak (Fig.S5 and S6).

Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (3)

In addition, we have plotted (Fig.3) the square conductance Gsqsubscript𝐺𝑠𝑞G_{sq}italic_G start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT (1/Rsq1subscript𝑅𝑠𝑞1/R_{sq}1 / italic_R start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT) as a function of the dose 𝒩𝒩\mathcal{N}caligraphic_N for two series of 1 shot and 5 shots samples.The two series show a linear Gsq(𝒩)subscript𝐺𝑠𝑞𝒩G_{sq}(\mathcal{N})italic_G start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT ( caligraphic_N ) dependence, which is consistent with the simple Drude formula Gsq=eμ𝒩subscript𝐺𝑠𝑞𝑒𝜇𝒩G_{sq}=e\mu\mathcal{N}italic_G start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT = italic_e italic_μ caligraphic_N, where e𝑒eitalic_e is the electronic charge and μ𝜇\muitalic_μ the carriers mobility. The mobility obtained by the linear fit is μ=12.7cm2V1s1𝜇12.7𝑐superscript𝑚2superscript𝑉1superscript𝑠1\mu=12.7\,cm^{2}V^{-1}s^{-1}italic_μ = 12.7 italic_c italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_V start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, a value in agreement with past measurements for such doping levels [24]. However, this linear fit does not extrapolate to the x-axis origin for the 1 shot series (dotted line), whereas it does for the 5 shots series (solid line). The difference can be explained by the existence of a bilayer (or multilayer) structure for the 1 shot series, with one layer more disordered than the other. Indeed then Gsq1shot=eμ𝒩1+eμ𝒩2<Gsq5shots=eμ𝒩superscriptsubscript𝐺𝑠𝑞1𝑠𝑜𝑡𝑒𝜇subscript𝒩1𝑒superscript𝜇subscript𝒩2superscriptsubscript𝐺𝑠𝑞5𝑠𝑜𝑡𝑠𝑒𝜇𝒩G_{sq}^{1shot}=e\mu\mathcal{N}_{1}+e\mu^{\prime}\mathcal{N}_{2}<G_{sq}^{5shots%}=e\mu\mathcal{N}italic_G start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_s italic_h italic_o italic_t end_POSTSUPERSCRIPT = italic_e italic_μ caligraphic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_e italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT caligraphic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < italic_G start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 5 italic_s italic_h italic_o italic_t italic_s end_POSTSUPERSCRIPT = italic_e italic_μ caligraphic_N with μ<μsuperscript𝜇𝜇\mu^{\prime}<\muitalic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < italic_μ. Plotting Gsqsubscript𝐺𝑠𝑞G_{sq}italic_G start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT vs 𝒩=𝒩1+𝒩2𝒩subscript𝒩1subscript𝒩2\mathcal{N}=\mathcal{N}_{1}+\mathcal{N}_{2}caligraphic_N = caligraphic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + caligraphic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, gives Gsq1shot=eμ(𝒩1+𝒩2)e(μμ)𝒩2superscriptsubscript𝐺𝑠𝑞1𝑠𝑜𝑡𝑒𝜇subscript𝒩1subscript𝒩2𝑒𝜇superscript𝜇subscript𝒩2G_{sq}^{1shot}=e\mu(\mathcal{N}_{1}+\mathcal{N}_{2})-e(\mu-\mu^{\prime})%\mathcal{N}_{2}italic_G start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_s italic_h italic_o italic_t end_POSTSUPERSCRIPT = italic_e italic_μ ( caligraphic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + caligraphic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) - italic_e ( italic_μ - italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) caligraphic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, with a negative offset such as the one observed in Fig.3. From the offset amplitude it is also possible to roughly estimate the thickness of the poorly conducting layer: taking the saturation active concentration in the whole annealed layer (n3×1021similar-to𝑛3superscript1021n\sim 3\times 10^{21}\,italic_n ∼ 3 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPTcm-3) and assuming μ>>μ0much-greater-than𝜇superscript𝜇similar-to0\mu>>\mu^{\prime}\sim 0italic_μ > > italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∼ 0, from ΔGsq=3.9Δsubscript𝐺𝑠𝑞3.9\Delta G_{sq}=3.9\,roman_Δ italic_G start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT = 3.9mS = eμ𝒩2=eμn2d2𝑒𝜇subscript𝒩2𝑒𝜇subscript𝑛2subscript𝑑2e\mu\mathcal{N}_{2}=e\mu n_{2}d_{2}italic_e italic_μ caligraphic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_e italic_μ italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, we deduce d26.5similar-tosubscript𝑑26.5d_{2}\sim 6.5\,italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∼ 6.5nm.For such rough estimation, this layer thickness is comparable, while smaller, to the 7 to 11 nm thickness of the central sublayer in 1 shot sample (Fig.2), where a high density of stacking faults and dislocations is observed, suggesting that the very disordered layer has a small (non-zero) μsuperscript𝜇\mu^{\prime}italic_μ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, while the 5 shots samples have an hom*ogeneous mobility.

Superconductivity and laser energy

Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (4)

We now focus on the strong energy dependence of the superconducting critical temperature. As the laser energy affects directly the melted thickness, we plot Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT vs. dmeltsubscript𝑑𝑚𝑒𝑙𝑡d_{melt}italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT in Fig.4. The correspondence between dmeltsubscript𝑑𝑚𝑒𝑙𝑡d_{melt}italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT and ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT is extracted independently from the measurements of the TRR, the dose, and the resistance, showing a good agreement and a common dependence dmelt(EL)subscript𝑑𝑚𝑒𝑙𝑡subscript𝐸𝐿d_{melt}(E_{L})italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) (details in the Suppl. Mat.).For both 1 and 5 laser shots, Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT increases steeply with the thickness up to 0.5 K.To understand the critical temperature dependence with thickness we recall that the melted, ultra-doped layer is on top of the remaining, unmelted Si above the BOX, where an implanted concentration above 1at.%\sim 1\,at.\%∼ 1 italic_a italic_t . % is expected.In bilayer structures made of one superconducting (S) layer in contact with a second normal (N) layer, a strong suppression of the Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT can take place, if the interface between the two layers is transparent. This is only observed when the thickness of the S layer is smaller or of the order of the superconducting coherence length, as is our case with dmelt<33subscript𝑑𝑚𝑒𝑙𝑡33d_{melt}<33italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT < 33nm<ξ50absent𝜉50<\xi\approx 50\,< italic_ξ ≈ 50nm [20]. This effect, known as the inverse proximity effect, was already observed on superconducting Si layers realised in bulk Si samples [25] and is well described with the Usadel model [26, 27, 28]:

Tcsubscript𝑇𝑐\displaystyle T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT=Tc0[Tc01.14ΘD1+(kBΘDτ)2]bdNdSabsentsubscript𝑇𝑐0superscriptdelimited-[]subscript𝑇𝑐01.14subscriptΘ𝐷1superscriptsubscript𝑘𝐵subscriptΘ𝐷𝜏2𝑏subscript𝑑𝑁subscript𝑑𝑆\displaystyle=T_{c0}\left[\frac{T_{c0}}{1.14\Theta_{D}}\sqrt{1+\left(\frac{k_{%B}\Theta_{D}}{\tau}\right)^{2}}\right]^{\frac{bd_{N}}{d_{S}}}= italic_T start_POSTSUBSCRIPT italic_c 0 end_POSTSUBSCRIPT [ divide start_ARG italic_T start_POSTSUBSCRIPT italic_c 0 end_POSTSUBSCRIPT end_ARG start_ARG 1.14 roman_Θ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_ARG square-root start_ARG 1 + ( divide start_ARG italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT roman_Θ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_ARG start_ARG italic_τ end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] start_POSTSUPERSCRIPT divide start_ARG italic_b italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_ARG start_ARG italic_d start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT(1a)
τ𝜏\displaystyle\tauitalic_τ=2πvF,SρintbdN+dSbdNdSabsentPlanck-constant-over-2-pi2𝜋subscript𝑣𝐹𝑆subscript𝜌𝑖𝑛𝑡𝑏subscript𝑑𝑁subscript𝑑𝑆𝑏subscript𝑑𝑁subscript𝑑𝑆\displaystyle=\frac{\hbar}{2\pi}\frac{v_{F,S}}{\rho_{int}}\frac{bd_{N}+d_{S}}{%bd_{N}d_{S}}= divide start_ARG roman_ℏ end_ARG start_ARG 2 italic_π end_ARG divide start_ARG italic_v start_POSTSUBSCRIPT italic_F , italic_S end_POSTSUBSCRIPT end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT italic_i italic_n italic_t end_POSTSUBSCRIPT end_ARG divide start_ARG italic_b italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT + italic_d start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG start_ARG italic_b italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG(1b)
b𝑏\displaystyle bitalic_b=vF,SvF,N=(nNnS)1/3absentsubscript𝑣𝐹𝑆subscript𝑣𝐹𝑁superscriptsubscript𝑛𝑁subscript𝑛𝑆13\displaystyle=\frac{v_{F,S}}{v_{F,N}}=\left(\frac{n_{N}}{n_{S}}\right)^{1/3}= divide start_ARG italic_v start_POSTSUBSCRIPT italic_F , italic_S end_POSTSUBSCRIPT end_ARG start_ARG italic_v start_POSTSUBSCRIPT italic_F , italic_N end_POSTSUBSCRIPT end_ARG = ( divide start_ARG italic_n start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT(1c)

where Tc0subscript𝑇𝑐0T_{c0}italic_T start_POSTSUBSCRIPT italic_c 0 end_POSTSUBSCRIPT is the superconducting critical temperature of the single S layer, ΘDsubscriptΘ𝐷\Theta_{D}roman_Θ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT the phonon energy scale in temperature units, dNsubscript𝑑𝑁d_{N}italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT (dSsubscript𝑑𝑆d_{S}italic_d start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT) the thickness, vF,Nsubscript𝑣𝐹𝑁v_{F,N}italic_v start_POSTSUBSCRIPT italic_F , italic_N end_POSTSUBSCRIPT (vF,Ssubscript𝑣𝐹𝑆v_{F,S}italic_v start_POSTSUBSCRIPT italic_F , italic_S end_POSTSUBSCRIPT) the Fermi velocity and nNsubscript𝑛𝑁n_{N}italic_n start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT (nSsubscript𝑛𝑆n_{S}italic_n start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT) the active dopant concentration in the normal (superconducting) layer [14]. ρintsubscript𝜌𝑖𝑛𝑡\rho_{int}italic_ρ start_POSTSUBSCRIPT italic_i italic_n italic_t end_POSTSUBSCRIPT is the dimensionless interface resistance per channel, related to the total interface resistance per unit area A by RintA=h/2e2(λF,S/2)2ρintsubscript𝑅𝑖𝑛𝑡𝐴2superscript𝑒2superscriptsubscript𝜆𝐹𝑆22subscript𝜌𝑖𝑛𝑡R_{int}A=h/2e^{2}\,(\lambda_{F,S}/2)^{2}\,\rho_{int}italic_R start_POSTSUBSCRIPT italic_i italic_n italic_t end_POSTSUBSCRIPT italic_A = italic_h / 2 italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_F , italic_S end_POSTSUBSCRIPT / 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_i italic_n italic_t end_POSTSUBSCRIPT.
The first noteworthy result is that it is possible to describe the Tc(dmelt)subscript𝑇𝑐subscript𝑑𝑚𝑒𝑙𝑡T_{c}(d_{melt})italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT ) dependence with zero interface resistance (ρint=0subscript𝜌𝑖𝑛𝑡0\rho_{int}=0italic_ρ start_POSTSUBSCRIPT italic_i italic_n italic_t end_POSTSUBSCRIPT = 0), for both 1 and 5 laser shots, highlighting a very good transparency.Even more, all the fits imposing a small but finite interface are, though in reasonable agreement, less satisfactory than the one at zero interface. Eq.1 thus simplifies to:

Tc=Tc0[Tc01.14ΘD]bdNdSsubscript𝑇𝑐subscript𝑇𝑐0superscriptdelimited-[]subscript𝑇𝑐01.14subscriptΘ𝐷𝑏subscript𝑑𝑁subscript𝑑𝑆T_{c}=T_{c0}\,\left[\frac{T_{c0}}{1.14\Theta_{D}}\right]^{\frac{bd_{N}}{d_{S}}}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_c 0 end_POSTSUBSCRIPT [ divide start_ARG italic_T start_POSTSUBSCRIPT italic_c 0 end_POSTSUBSCRIPT end_ARG start_ARG 1.14 roman_Θ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_ARG ] start_POSTSUPERSCRIPT divide start_ARG italic_b italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_ARG start_ARG italic_d start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT(2)

To reduce the number of free fitting parameters, we fix ΘDsubscriptΘ𝐷\Theta_{D}roman_Θ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT, of weak influence on the fit, to its simulated value ΘD=650subscriptΘ𝐷650\Theta_{D}=650\,roman_Θ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT = 650K [29]. The simplest thicknesses choice consists in associating the superconducting layer to the melted layer. Thus, the superconducting and normal layer thicknesses are dS=dmeltsubscript𝑑𝑆subscript𝑑𝑚𝑒𝑙𝑡d_{S}=d_{melt}italic_d start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT and dN=dSOIdmeltsubscript𝑑𝑁subscript𝑑𝑆𝑂𝐼subscript𝑑𝑚𝑒𝑙𝑡d_{N}=d_{SOI}-d_{melt}italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = italic_d start_POSTSUBSCRIPT italic_S italic_O italic_I end_POSTSUBSCRIPT - italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT. The remaining fitting parameters are Tc,0subscript𝑇𝑐0T_{c,0}italic_T start_POSTSUBSCRIPT italic_c , 0 end_POSTSUBSCRIPT and the ratio of the Fermi velocities b=vF,S/vF,N𝑏subscript𝑣𝐹𝑆subscript𝑣𝐹𝑁b=v_{F,S}/v_{F,N}italic_b = italic_v start_POSTSUBSCRIPT italic_F , italic_S end_POSTSUBSCRIPT / italic_v start_POSTSUBSCRIPT italic_F , italic_N end_POSTSUBSCRIPT. The best fit of Tc(dmelt)subscript𝑇𝑐subscript𝑑𝑚𝑒𝑙𝑡T_{c}(d_{melt})italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT ) for the whole datasets containing 1 and 5 laser shots results is given by Tc,0=0.52subscript𝑇𝑐00.52T_{c,0}=0.52\,italic_T start_POSTSUBSCRIPT italic_c , 0 end_POSTSUBSCRIPT = 0.52K and b=0.5𝑏0.5b=0.5italic_b = 0.5 (Fig.4). The fitted Tc,0subscript𝑇𝑐0T_{c,0}italic_T start_POSTSUBSCRIPT italic_c , 0 end_POSTSUBSCRIPT corresponds well to the critical temperature Tc=0.5subscript𝑇𝑐0.5T_{c}=0.5\,italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 0.5K measured in GILD Si bulk samples of similar thickness d=30𝑑30d=30\,italic_d = 30nm and active doping nB=3×1021subscript𝑛𝐵3superscript1021n_{B}=3\times 10^{21}\,italic_n start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = 3 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPTcm-3 [20]. Expressing b𝑏bitalic_b in in the free electron model b=vF,S/vF,N=(nN/nS)1/3𝑏subscript𝑣𝐹𝑆subscript𝑣𝐹𝑁superscriptsubscript𝑛𝑁subscript𝑛𝑆13b=v_{F,S}/v_{F,N}=(n_{N}/n_{S})^{1/3}italic_b = italic_v start_POSTSUBSCRIPT italic_F , italic_S end_POSTSUBSCRIPT / italic_v start_POSTSUBSCRIPT italic_F , italic_N end_POSTSUBSCRIPT = ( italic_n start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT / italic_n start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT, we recover a concentration in the unmelted normal layer, underneath the melted layer, of nN=3.75×1020cm3subscript𝑛𝑁3.75superscript1020𝑐superscript𝑚3n_{N}=3.75\times 10^{20}cm^{-3}italic_n start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = 3.75 × 10 start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT italic_c italic_m start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT. This value is remarkably close to the equilibrium solubility limit nsol=4×1020cm3subscript𝑛𝑠𝑜𝑙4superscript1020𝑐superscript𝑚3n_{sol}=4\times 10^{20}cm^{-3}italic_n start_POSTSUBSCRIPT italic_s italic_o italic_l end_POSTSUBSCRIPT = 4 × 10 start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT italic_c italic_m start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT, suggesting that a large fraction of the dopants present in the implantation queue (>5.7×1020cm3absent5.7superscript1020𝑐superscript𝑚3>5.7\times 10^{20}cm^{-3}> 5.7 × 10 start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT italic_c italic_m start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT) would be activated, up to the equilibrium saturation concentration, by the heat provided by the melted layer just above (the Si melting temperature being 168316831683\,1683K).
While this two-parameter fit provides a coherent scenario, it is interesting to look at the results of the three parameters fit (Tc,0subscript𝑇𝑐0T_{c,0}italic_T start_POSTSUBSCRIPT italic_c , 0 end_POSTSUBSCRIPT, b𝑏bitalic_b and dSsubscript𝑑𝑆d_{S}italic_d start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT), relaxing the constraint about the superconducting thickness corresponding to the melted thickness, maintaining dN=dSOIdSsubscript𝑑𝑁subscript𝑑𝑆𝑂𝐼subscript𝑑𝑆d_{N}=d_{SOI}-d_{S}italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = italic_d start_POSTSUBSCRIPT italic_S italic_O italic_I end_POSTSUBSCRIPT - italic_d start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT. The fit is performed on the 1 shot samples, for which a larger range and number of points are available (Fig. 4). A better agreement with the experimental data is then achieved, with Tc,0=1.04subscript𝑇𝑐01.04T_{c,0}=1.04\,italic_T start_POSTSUBSCRIPT italic_c , 0 end_POSTSUBSCRIPT = 1.04K, b=0.108𝑏0.108b=0.108italic_b = 0.108 and dS=dmelt16.6subscript𝑑𝑆subscript𝑑𝑚𝑒𝑙𝑡16.6d_{S}=d_{melt}-16.6\,italic_d start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT - 16.6nm (Fig.4). These fitting parameters suggest a scenario where the superconducting layer is only the top part of the melted layer, above the highest dislocation line, where the strain has been relaxed (Fig.S8). In this case, the normal layer is dN=dSOIdmelt+16.6subscript𝑑𝑁subscript𝑑𝑆𝑂𝐼subscript𝑑𝑚𝑒𝑙𝑡16.6d_{N}=d_{SOI}-d_{melt}+16.6\,italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = italic_d start_POSTSUBSCRIPT italic_S italic_O italic_I end_POSTSUBSCRIPT - italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT + 16.6nm, which in the case of the samples shown in TEM analysis (Fig.2) gives dN=20.6subscript𝑑𝑁20.6d_{N}=20.6\,italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = 20.6nm, in agreement with the position of the dislocation line 1721172117-21\,17 - 21nm above the BOX. Tc,0subscript𝑇𝑐0T_{c,0}italic_T start_POSTSUBSCRIPT italic_c , 0 end_POSTSUBSCRIPT is moreover in reasonable agreement to the maximum Tc=0.9subscript𝑇𝑐0.9T_{c}=0.9\,italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 0.9K observed for dmelt=300subscript𝑑𝑚𝑒𝑙𝑡300d_{melt}=300\,italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT = 300nm thick bulk Si samples, where the influence of the thin, fully strained layer, can be neglected. In order to check if the identification of the superconducting layer with the relaxed one is also coherent in the case of the 5 shots samples, we have plotted in Fig.4 the Tc(dmelt)subscript𝑇𝑐subscript𝑑𝑚𝑒𝑙𝑡T_{c}(d_{melt})italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT ) one parameter fit imposing the same Tc,0=1.04subscript𝑇𝑐01.04T_{c,0}=1.04\,italic_T start_POSTSUBSCRIPT italic_c , 0 end_POSTSUBSCRIPT = 1.04K and dN=dSOIdmelt+9subscript𝑑𝑁subscript𝑑𝑆𝑂𝐼subscript𝑑𝑚𝑒𝑙𝑡9d_{N}=d_{SOI}-d_{melt}+9\,italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = italic_d start_POSTSUBSCRIPT italic_S italic_O italic_I end_POSTSUBSCRIPT - italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT + 9nm, again associating the superconducting layer to the relaxed region (for the sample in Fig.2, this gives dN=13subscript𝑑𝑁13d_{N}=13\,italic_d start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = 13nm in correspondence with the dislocation line 131313\,13nm above the BOX). The resulting fitted b=0.29𝑏0.29b=0.29italic_b = 0.29 is then higher than the one estimated from 1 shot samples fit b=0.108𝑏0.108b=0.108italic_b = 0.108, in agreement with the larger B concentration expected in the bottom of the sample after 5 laser shots following the more hom*ogeneous distribution of B for multiple laser shots. This results highlight the importance of the structural strain relaxation in the establishment of Si superconductivity, in agreement with recent results on bulk Si [20, 30].

Conclusions

In conclusion, we demonstrate superconducting monocrystalline Si epilayers with critical temperatures up to 0.50.50.5\,0.5K, obtained on 33 nm thick SOI 300 mm wafers after heavy pre-implantation of boron (2.5×1016cm2)2.5\times 10^{16}\,cm^{-2})2.5 × 10 start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT italic_c italic_m start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ) followed by nanosecond laser annealing with 252525\,25ns pulse duration.The analysis of the transport properties (R𝑅Ritalic_R, RRR𝑅𝑅𝑅RRRitalic_R italic_R italic_R, dose 𝒩𝒩\mathcal{N}caligraphic_N, Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT), coupled to structural measurements (XRD𝑋𝑅𝐷XRDitalic_X italic_R italic_D, STEM𝑆𝑇𝐸𝑀STEMitalic_S italic_T italic_E italic_M), have highlighted the effect of the nanosecond laser annealing energy and the impact of multiple laser anneals, both in the normal and superconducting phase.Increasing the laser energy allows increasing linearly Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, through the increase of the melted thickness (and thus of the superconducting thickness), at a constant saturation active concentration of 6at.%6\,at.\%6 italic_a italic_t . % (corresponding to the out-of-equilibrium solubility limit attained by nanosecond laser annealing), while also improving the overall quality of the layer, its crystallinity and conductivity. The maximum Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT obtained, 0.5K0.5𝐾0.5\,K0.5 italic_K, is comparable to the Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT of monocrystalline films of similar thickness obtained on bulk Si by Gas Immersion Laser Doping, where the dopants are introduced by ’softer’ chemisorption. This implies that nanosecond laser annealing can heal successfully the implantation-induced defects to recover a good crystallinity from the initial amorphized phase. This supports the possibility of transferring the fabrication of nanosecond laser annealed superconducting layers from a laboratory environment towards more standard implantation-based doping techniques.Performing just a few laser anneals (5) instead of a single one reduces the amount of structural defects, such as stacking faults and dislocations, and hom*ogenizes the B depth distribution.Finally, the quantitative analysis of the results in the frame of superconductor/normal metal bilayer structures suggests the importance of the structural strain relaxation to achieve the superconducting phase, and demonstrates an excellent transparency between the layers, allowing the further development of superconducting devices on SOI with compatible large scale integration tools.

Supplemental materials

XRD

We have performed θ2θ𝜃2𝜃\theta-2\thetaitalic_θ - 2 italic_θ X-Rays diffraction scans on 1 and 5 laser shots series. The spectra obtained for 1 and 5 shots are shown in Fig.S5. From these curves, the position, width and amplitude have been extracted using a non-linear Gaussian fit in the vicinity of the peaks. The evolution of those quantities is shown in Fig.S6.
A clear peak can only be observed when the melt depth exceeds the polycrystalline layer created by explosive recrystallization at low energy. The peak becomes sharper and higher with increasing laser energy (i.e. layer thickness), indicating better crystalline properties resulting in a more hom*ogeneous layer. The position of the Si:B peaks is situated at higher diffraction angle 2θSiB72similar-to2subscript𝜃𝑆𝑖𝐵superscript722\theta_{SiB}\sim 72^{\circ}2 italic_θ start_POSTSUBSCRIPT italic_S italic_i italic_B end_POSTSUBSCRIPT ∼ 72 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT than Si, resulting from the reduction of the crystal lattice due to the substitutional incorporation of B atoms. From the peak position, we have obtained the relative variation of the doped silicon out-of-plane lattice parameter using Bragg law:

Δaa=aperp,SiBaSiaSi=(θSiBθSi)cotan(θSi)Δ𝑎𝑎subscript𝑎𝑝𝑒𝑟𝑝𝑆𝑖𝐵subscript𝑎𝑆𝑖subscript𝑎𝑆𝑖subscript𝜃𝑆𝑖𝐵subscript𝜃𝑆𝑖𝑐𝑜𝑡𝑎𝑛subscript𝜃𝑆𝑖\frac{\Delta a}{a}=\frac{a_{perp,SiB}-a_{Si}}{a_{Si}}=(\theta_{SiB}-\theta_{Si%})\,cotan(\theta_{Si})divide start_ARG roman_Δ italic_a end_ARG start_ARG italic_a end_ARG = divide start_ARG italic_a start_POSTSUBSCRIPT italic_p italic_e italic_r italic_p , italic_S italic_i italic_B end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT end_ARG = ( italic_θ start_POSTSUBSCRIPT italic_S italic_i italic_B end_POSTSUBSCRIPT - italic_θ start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT ) italic_c italic_o italic_t italic_a italic_n ( italic_θ start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT )(3)

where aperp,SiBsubscript𝑎𝑝𝑒𝑟𝑝𝑆𝑖𝐵a_{perp,SiB}italic_a start_POSTSUBSCRIPT italic_p italic_e italic_r italic_p , italic_S italic_i italic_B end_POSTSUBSCRIPT is the Si:B lattice parameter perpendicular to the epilayer, aSisubscript𝑎𝑆𝑖a_{Si}italic_a start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT that of the bare silicon and θSiBsubscript𝜃𝑆𝑖𝐵\theta_{SiB}italic_θ start_POSTSUBSCRIPT italic_S italic_i italic_B end_POSTSUBSCRIPT and θSisubscript𝜃𝑆𝑖\theta_{Si}italic_θ start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT the diffraction angles of Si:B and Si. We obtain Δa/a=3.4Δ𝑎𝑎3.4\Delta a/a=-3.4roman_Δ italic_a / italic_a = - 3.4 to 3.8%percent3.8-3.8\%- 3.8 %.

Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (5)
Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (6)

Estimating the doped depth

The estimate of the melted and correspondingly of the recrystallized SiB thickness, is crucial to understand the superconducting properties of our epilayers (see main text). The laser annealed thickness was determined by several means (Fig.S7). First, the Time Resolved Reflectivity measured in-situ during the doping allows identifying the laser energy ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT for which the melt begins (melting threshold, dmelt=0subscript𝑑𝑚𝑒𝑙𝑡0d_{melt}=0italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT = 0), for the poly-Si to monocrystalline Si transition (dpolymonodaSisimilar-tosubscript𝑑𝑝𝑜𝑙𝑦𝑚𝑜𝑛𝑜subscript𝑑𝑎𝑆𝑖d_{poly-mono}\sim d_{a-Si}italic_d start_POSTSUBSCRIPT italic_p italic_o italic_l italic_y - italic_m italic_o italic_n italic_o end_POSTSUBSCRIPT ∼ italic_d start_POSTSUBSCRIPT italic_a - italic_S italic_i end_POSTSUBSCRIPT) and for the full-melt (dmelt=dSOIsubscript𝑑𝑚𝑒𝑙𝑡subscript𝑑𝑆𝑂𝐼d_{melt}=d_{SOI}italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT = italic_d start_POSTSUBSCRIPT italic_S italic_O italic_I end_POSTSUBSCRIPT). Since the melted depth is linear with ELsubscript𝐸𝐿E_{L}italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT (as confirmed for different laser pulse profiles in [31]), a first estimate of dmelt(EL)subscript𝑑𝑚𝑒𝑙𝑡subscript𝐸𝐿d_{melt}(E_{L})italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) is realized (stars and blue dotted line, Fig.S7). This first study also shows that both the thinnest (dpolymonosubscript𝑑𝑝𝑜𝑙𝑦𝑚𝑜𝑛𝑜d_{poly-mono}italic_d start_POSTSUBSCRIPT italic_p italic_o italic_l italic_y - italic_m italic_o italic_n italic_o end_POSTSUBSCRIPT) and thickest (dfullmeltsubscript𝑑𝑓𝑢𝑙𝑙𝑚𝑒𝑙𝑡d_{full-melt}italic_d start_POSTSUBSCRIPT italic_f italic_u italic_l italic_l - italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT) monocrystalline layers display a similar concentration 𝒩/d6at.%=3×1021at/cm3\mathcal{N}/d\approx 6at.\%=3\times 10^{21}\,at/cm^{3}caligraphic_N / italic_d ≈ 6 italic_a italic_t . % = 3 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT italic_a italic_t / italic_c italic_m start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Assuming that all the layers have attained the same limit saturation concentration, it is possible to plot the melted depth dmelt=𝒩/nsatsubscript𝑑𝑚𝑒𝑙𝑡𝒩subscript𝑛𝑠𝑎𝑡d_{melt}=\mathcal{N}/n_{sat}italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT = caligraphic_N / italic_n start_POSTSUBSCRIPT italic_s italic_a italic_t end_POSTSUBSCRIPT from the whole set of active dose 𝒩𝒩\mathcal{N}caligraphic_N measurements, for both 1 and 5 laser shots (Fig.1), confirming the TRR𝑇𝑅𝑅TRRitalic_T italic_R italic_R estimation (black and red dots, Fig.S7). The constant active boron concentration is also in agreement with XRD measurements.
Additionally, the melted depth can also be extracted from the square conductance : dmelt=ρGsqsubscript𝑑𝑚𝑒𝑙𝑡𝜌subscript𝐺𝑠𝑞d_{melt}=\rho G_{sq}italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT = italic_ρ italic_G start_POSTSUBSCRIPT italic_s italic_q end_POSTSUBSCRIPT with ρ𝜌\rhoitalic_ρ the resistivity of the recrystallized SiB layer assuming the underneath layer has a negligible conductance (red circles, Fig.S7). For this extraction we only use data from the hom*ogeneous 5 laser shots series. The value of the resistivity, ρ=170μΩcm𝜌170𝜇Ω𝑐𝑚\rho=170\,\mu\Omega cmitalic_ρ = 170 italic_μ roman_Ω italic_c italic_m, is fixed from the resistivity of the full melt sample, for which the thickness is known exactly, and whose value is coherent with previous studies [20].
Remarkably, these estimates of the melted depth extracted from different measurements are very consistent with each others and within 10%percent\%% uncertainty. Moreover, the melted depth dependence is consistent with the process described in sectionExplosive crystallisation, monocrystalline SiB, full-melt: at low energy, dmeltsubscript𝑑𝑚𝑒𝑙𝑡d_{melt}italic_d start_POSTSUBSCRIPT italic_m italic_e italic_l italic_t end_POSTSUBSCRIPT is almost constant and close to 18nm18𝑛𝑚18\,nm18 italic_n italic_m, while at larger energy, it increases linearly to reach 33nm33𝑛𝑚33\,nm33 italic_n italic_m at the full melt threshold.

Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (7)

TEM - structural deformation

The in-plane and out-of-plane lattice deformations were extracted by the Geometrical Phase Analysis (GPA) method from High Resolution Transmission Electron Microscope (HRTEM) images. Fig.S8 shows the deformation for the two samples shown in Fig.2.The higher density of structural disorder can be correlated to the larger lattice deformation present in 1 shot samples. Indeed, the in-plane and out-of-plane deformations ϵ//=(aSiB//aSi)/aSisubscriptitalic-ϵabsentsubscript𝑎𝑆𝑖𝐵absentsubscript𝑎𝑆𝑖subscript𝑎𝑆𝑖\epsilon_{//}=(a_{SiB//}-a_{Si})/a_{Si}italic_ϵ start_POSTSUBSCRIPT / / end_POSTSUBSCRIPT = ( italic_a start_POSTSUBSCRIPT italic_S italic_i italic_B / / end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT ) / italic_a start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT and ϵ=(aSiBaSi)/aSisubscriptitalic-ϵperpendicular-tosubscript𝑎perpendicular-to𝑆𝑖𝐵absentsubscript𝑎𝑆𝑖subscript𝑎𝑆𝑖\epsilon_{\perp}=(a_{SiB\perp}-a_{Si})/a_{Si}italic_ϵ start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT = ( italic_a start_POSTSUBSCRIPT italic_S italic_i italic_B ⟂ end_POSTSUBSCRIPT - italic_a start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT ) / italic_a start_POSTSUBSCRIPT italic_S italic_i end_POSTSUBSCRIPT measured on the samples of Fig.2, show ϵ//=subscriptitalic-ϵabsentabsent\epsilon_{//}=italic_ϵ start_POSTSUBSCRIPT / / end_POSTSUBSCRIPT =1.9%percent\%% (1.5%percent\%%) and ϵ=subscriptitalic-ϵperpendicular-toabsent\epsilon_{\perp}=italic_ϵ start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT =2.5%percent\%% (2%percent\%%) for 1 shot (5 shots) respectively.

Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (8)

References

  • [1]Kuan EngJohnson Goh, LeonidA Krivitsky, and DennisL Polla.Quantum technologies for engineering: the materials challenge.Materials for Quantum Technology, 2(1):013002, mar 2022.
  • [2]Marco Polini, Francesco Giazotto, KinChung Fong, IoanM. Pop, Carsten Schuck,Tommaso Boccali, Giovanni Signorelli, Massimo D’Elia, RobertH. Hadfield,Vittorio Giovannetti, Davide Rossini, Alessandro Tredicucci, DmitriK.Efetov, Frank H.L. Koppens, Pablo Jarillo-Herrero, Anna Grassellino, andDario Pisignano.Materials and devices for fundamental quantum science and quantumtechnologies.Arxiv.org/abs/2201.09260, 2022.
  • [3]Qubits meet materials science.Nature Reviews Materials, 6(10):869–869, 2021.
  • [4]NathalieP. deLeon, KoheiM. Itoh, Dohun Kim, KaranK. Mehta, TracyE.Northup, Hanhee Paik, B.S. Palmer, N.Samarth, Sorawis Sangtawesin, andD.W. Steuerman.Materials challenges and opportunities for quantum computinghardware.Science, 372(6539):eabb2823, 2021.
  • [5]Irfan Siddiqi.Engineering high-coherence superconducting qubits.Nature Reviews Materials, 6(10):875–891, 2021.
  • [6]Alexander P.M. Place, Lila V.H. Rodgers, Pranav Mundada, BasilM. Smitham,Mattias Fitzpatrick, Zhaoqi Leng, Anjali Premkumar, Jacob Bryon, AndreiVrajitoarea, Sara Sussman, Guangming Cheng, Trisha Madhavan, HarshvardhanK.Babla, XuanHoang Le, Youqi Gang, Berthold Jäck, András Gyenis, Nan Yao,RobertJ. Cava, NathalieP. deLeon, and AndrewA. Houck.New material platform for superconducting transmon qubits withcoherence times exceeding 0.3 milliseconds.Nature Communications, 12(1):1779, 2021.
  • [7]Maud Vinet.The path to scalable quantum computing with silicon spin qubits.Nature Nanotechnology, 16(12):1296–1298, 2021.
  • [8]Giordano Scappucci, Christoph Kloeffel, FlorisA. Zwanenburg, Daniel Loss,Maksym Myronov, Jian-Jun Zhang, Silvano DeFranceschi, Georgios Katsaros, andMenno Veldhorst.The germanium quantum information route.Nature Reviews Materials, 6(10):926–943, 2021.
  • [9]Stephan G.J. Philips, MateuszT. M?dzik, SergeyV. Amitonov, SanderL.deSnoo, Maximilian Russ, Nima Kalhor, Christian Volk, William I.L. Lawrie,Delphine Brousse, Larysa Tryputen, BrianPaquelet Wuetz, Amir Sammak, MennoVeldhorst, Giordano Scappucci, and Lieven M.K. Vandersypen.Universal control of a six-qubit quantum processor in silicon, 2022.
  • [10]Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, JosephC. Bardin, RamiBarends, Rupak Biswas, Sergio Boixo, Fernando G. S.L. Brandao, DavidA.Buell, Brian Burkett, YuChen, Zijun Chen, Ben Chiaro, Roberto Collins,William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, AustinFowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, SteveHabegger, MatthewP. Harrigan, MichaelJ. Hartmann, Alan Ho, Markus Hoffmann,Trent Huang, TravisS. Humble, SergeiV. Isakov, Evan Jeffrey, Zhang Jiang,Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, PaulV. Klimov, Sergey Knysh,Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, ErikLucero, Dmitry Lyakh, Salvatore Mandrà, JarrodR. McClean, Matthew McEwen,Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus,Ofer Naaman, Matthew Neeley, Charles Neill, MurphyYuezhen Niu, Eric Ostby,Andre Petukhov, JohnC. Platt, Chris Quintana, EleanorG. Rieffel, PedramRoushan, NicholasC. Rubin, Daniel Sank, KevinJ. Satzinger, VadimSmelyanskiy, KevinJ. Sung, MatthewD. Trevithick, Amit Vainsencher, BenjaminVillalonga, Theodore White, Z.Jamie Yao, Ping Yeh, Adam Zalcman, HartmutNeven, and JohnM. Martinis.Quantum supremacy using a programmable superconducting processor.Nature, 574(7779):505–510, 2019.
  • [11]Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen,Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, ChuGuo, Shaojun Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo,Liping Li, NaLi, Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin,Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun, Liangyuan Wang, ShiyuWang, Dachao Wu, YuXu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen Ye,Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, KailiZhang, Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling Zhu,Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan.Strong quantum computational advantage using a superconductingquantum processor.Phys. Rev. Lett., 127:180501, Oct 2021.
  • [12]E.Bustarret, C.Marcenat, P.Achatz, J.Kacmarcik, F.Levy, A.Huxley,L.Ortega, E.Bourgeois, X.Blase, D.Débarre, and J.Boulmer.Superconductivity in doped cubic silicon.Nature, 444(7118):465–468, November 2006.
  • [13]C.Marcenat, J.Kacmarcik, R.Piquerel, P.Achatz, G.Prudon, C.Dubois,B.Gautier, J.C. Dupuy, E.Bustarret, L.Ortega, T.Klein, J.Boulmer,T.Kociniewski, and D.Débarre.Low-temperature transition to a superconducting phase in boron-dopedsilicon films grown on (001)-oriented silicon wafers.Phys. Rev. B, 81:020501, Jan 2010.
  • [14]F.Chiodi, A.Grockowiak, J.E. Duvauchelle, F.Fossard, F.Lefloch, T.Klein,C.Marcenat, and D.Débarre.Gas immersion laser doping for superconducting nanodevices.Applied Surface Science, 302(0):209 – 212, 2014.E-MRS 2013 Symposium V: Laser Material Interactions for Micro- andNano- Applications 27-31 May 2013, Strasbourg (France).
  • [15]R.Daubriac, P.Acosta Alba, C.Marcenat, S.Lequien, T.D. Vethaak,F.Nemouchi, F.Lefloch, and S.Kerdiles.Superconducting boron-doped silicon-on-insulator layers by nanosecondlaser annealing.ECS Journal of Solid State Science and Technology, IOP Science,10:014004, 2021.
  • [16]P.Dumas, M.Opprecht, S.Kerdilès, J.Lábár, B.Pécz, F.Lefloch, andF.Nemouchi.Superconductivity in laser-annealed monocrystalline silicon films:The role of boron implant.Applied Physics Letters, 123(13):132602, 09 2023.
  • [17]J.E. Duvauchelle, A.Francheteau, C.Marcenat, F.Chiodi, D.Débarre,K.Hasselbach, J.R. Kirtley, and F.Lefloch.Silicon superconducting quantum interference device.Applied Physics Letters, 107(7):072601, 2015.
  • [18]F.Chiodi, J.-E. Duvauchelle, C.Marcenat, D.Débarre, and F.Lefloch.Proximity-induced superconductivity in all-silicon superconductor/normal-metal junctions.Phys. Rev. B, 96:024503, Jul 2017.
  • [19]Matthias Posselt and JochenP. Biersack.Computer simulation of ion implantation into crystalline targets.Nuclear Instruments & Methods in Physics Research SectionB-beam Interactions With Materials and Atoms, 64:706–710, 1992.
  • [20]Léonard Desvignes.Laser ultra-doped superconducting silicon: from the material tothe devices.Theses, Université Paris Saclay , April 2023.
  • [21]MichaelO. Thompson, G.J. Galvin, J.W. Mayer, P.S. Peercy, J.M. Poate,D.C. Jacobson, A.G. Cullis, and N.G. Chew.Melting temperature and explosive crystallization of amorphoussilicon during pulsed laser irradiation.Phys. Rev. Lett., 52:2360–2363, Jun 1984.
  • [22]R.F. Wood and G.E. Jellison.Chapter 4 melting model of pulsed laser processing.volume23 of Semiconductors and Semimetals, pages 165–250.Elsevier, 1984.
  • [23]Géraldine Hallais, Gilles Patriarche, Léonard Desvignes, Dominique Débarre,and Francesca Chiodi.Stem analysis of deformation and b distribution in nanosecond laserultra-doped si:b.Semiconductor Science and Technology, 38(3):034003, feb 2023.
  • [24]H.K. Sy, D.K. Desai, and C.K. Ong.Electron screening and mobility in heavily doped silicon.physica status solidi (b), 130(2):787–792, 1985.
  • [25]A.Grockowiak, T.Klein, H.Cercellier, F.Lévy-Bertrand, X.Blase,J.Kačmarčik, T.Kociniewski, F.Chiodi, D.Débarre, G.Prudon, C.Dubois,and C.Marcenat.Thickness dependence of the superconducting critical temperature inheavily doped si:b epilayers.Phys. Rev. B, 88:064508, Aug 2013.
  • [26]Ya.V. Fominov and M.V. Feigel’man.Superconductive properties of thin dirty superconductor–normal-metalbilayers.Phys. Rev. B, 63:094518, Feb 2001.
  • [27]S.Guéron, H.Pothier, NormanO. Birge, D.Esteve, and M.H. Devoret.Superconducting proximity effect probed on a mesoscopic length scale.Phys. Rev. Lett., 77:3025–3028, Sep 1996.
  • [28]JohnM Martinis, G.C Hilton, K.D Irwin, and D.A Wollman.Calculation of tc in a normal-superconductor bilayer using themicroscopic-based usadel theory.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,444(1):23–27, 2000.
  • [29]Lilia Boeri, Jens Kortus, and O.K. Andersen.Three-dimensional mgb2subscriptmgb2{\mathrm{m}\mathrm{g}\mathrm{b}}_{2}roman_mgb start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-typesuperconductivity in hole-doped diamond.Phys. Rev. Lett., 93:237002, Nov 2004.
  • [30]S.Nath, I.Turan, L.Desvignes, L.Largeau, O.Mauguin, M.Túnica, M.Amato,C.Renard, G.Hallais, D.Débarre, and F.Chiodi.Tuning superconductivity in nanosecond laser annealed boron dopedsi1xgex𝑠subscript𝑖1𝑥𝑔subscript𝑒𝑥si_{1-x}ge_{x}italic_s italic_i start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPT italic_g italic_e start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT epilayers, 2024.
  • [31]Pierre Bonnet.Mesures résonantes des propriétés hautesfréquences du silicium supraconducteur ultra-dopé au bore parlaser.Theses, Université Paris Saclay (COmUE), December 2019.
  • [32]M.J. Hÿtch, E.Snoeck, and R.Kilaas.Quantitative measurement of displacement and strain fields from hremmicrographs.Ultramicroscopy, 74(3):131–146, 1998.
Nanosecond Laser Annealing: impact on superconducting Silicon on Insulator epilayers (2024)
Top Articles
Latest Posts
Article information

Author: Domingo Moore

Last Updated:

Views: 6025

Rating: 4.2 / 5 (73 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Domingo Moore

Birthday: 1997-05-20

Address: 6485 Kohler Route, Antonioton, VT 77375-0299

Phone: +3213869077934

Job: Sales Analyst

Hobby: Kayaking, Roller skating, Cabaret, Rugby, Homebrewing, Creative writing, amateur radio

Introduction: My name is Domingo Moore, I am a attractive, gorgeous, funny, jolly, spotless, nice, fantastic person who loves writing and wants to share my knowledge and understanding with you.